Basic Simulation Environment for Highly Customized Connected and Autonomous Vehicle Kinematic Scenarios
نویسندگان
چکیده
To enhance the reality of Connected and Autonomous Vehicles (CAVs) kinematic simulation scenarios and to guarantee the accuracy and reliability of the verification, a four-layer CAVs kinematic simulation framework, which is composed with road network layer, vehicle operating layer, uncertainties modelling layer and demonstrating layer, is proposed in this paper. Properties of the intersections are defined to describe the road network. A target position based vehicle position updating method is designed to simulate such vehicle behaviors as lane changing and turning. Vehicle kinematic models are implemented to maintain the status of the vehicles when they are moving towards the target position. Priorities for individual vehicle control are authorized for different layers. Operation mechanisms of CAVs uncertainties, which are defined as position error and communication delay in this paper, are implemented in the simulation to enhance the reality of the simulation. A simulation platform is developed based on the proposed methodology. A comparison of simulated and theoretical vehicle delay has been analyzed to prove the validity and the creditability of the platform. The scenario of rear-end collision avoidance is conducted to verify the uncertainties operating mechanisms, and a slot-based intersections (SIs) control strategy is realized and verified in the simulation platform to show the supports of the platform to CAVs kinematic simulation and verification.
منابع مشابه
Design of Robust Finite-Time Nonlinear Controllers for a 6-DOF Autonomous Underwater Vehicle for Path Tracking Objective
In this paper, kinematic and dynamic equations of a 6-DOF (Degrees Of Freedom) autonomous underwater vehicle (6-DOF AUV) are introduced and described completely. By developing the nonsingular terminal sliding mode control method, three separate groups of control inputs are proposed for the autonomous underwater vehicle subjected to uncertainties including parametric uncertainties, unmodeled dyn...
متن کاملAutonomous Parallel Parking of a Car Based on Parking Space Detection and Fuzzy Controller
This paper develops an automatic parking algorithm based on a fuzzy logic controller with the vehicle pose for the input and the steering angle for the output. In this way some feasible reference trajectory path have been introduced according to geometric and kinematic constraints and nonholonomic constraints to simulate motion path of car. Also a novel method is used for parking space detec...
متن کاملGuidance and Control of Autonomous Underwater Vehicles
This paper discusses the design and practical use of efficient trajectories for an autonomous underwater vehicle. The vehicle model that will be presented is based on the NASA funded Deep Phreatic Thermal Explorer (DEPTHX) and the Omni-Directional Intelligent Navigator (ODIN). The underlying mathematical framework is developed using geometric control theory and differential geometry. Briefly, t...
متن کاملA Microscopic Simulation Modelling of Vehicle Monitoring Using Kinematic Data Based on GPS and ITS Technologies
This paper presents an en-route anti-terrorism security system for commercial vehicle operations (CVO) using kinematic data based on Global Positioning Systems (GPS) and Intelligent Transportation Systems (ITS) technologies. The real-time information of the coordinate position and speed of the concerned vehicle as well as the speed of and the gap to the vehicle ahead was taken into account duri...
متن کاملImplementation of a Robotic Convoy Control Using Guidance Laws
The goal of this project is to implement a semi-autonomous system consisting of two ground vehicles that simulate a convoy control scheme using operator control for the master and autonomous control for the slave. Using a control system based on platform kinematics in conjunction with the open source ROS framework, three different convoy scenarios are investigated using two Clearpath Husky A100...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 17 شماره
صفحات -
تاریخ انتشار 2017